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Prolonged treatment with the oxazolidinone linezolid is associated with myelosuppression, lactic acidosis, and neuropathies,
toxicities likely caused by impairment of mitochondrial protein synthesis (MPS). To evaluate the potential of the novel oxazo-
lidinone tedizolid to cause similar side effects, nonclinical and pharmacokinetic assessments were conducted. In isolated rat
heart mitochondria, tedizolid inhibited MPS more potently than did linezolid (average [� standard error of the mean] 50% in-
hibitory concentration [IC50] for MPS of 0.31 � 0.02 �M versus 6.4 � 1.2 �M). However, a rigorous 9-month rat study compar-
ing placebo and high-dose tedizolid (resulting in steady-state area under the plasma concentration-time curve values about
8-fold greater than those with the standard therapeutic dose in humans) showed no evidence of neuropathy. Additional studies
explored why prolonged, high-dose tedizolid did not cause these mitochondriopathic side effects despite potent MPS inhibition
by tedizolid. Murine macrophage (J774) cell fractionation studies found no evidence of a stable association of tedizolid with eu-
karyotic mitochondria. Monte Carlo simulations based on population pharmacokinetic models showed that over the course of a
dosing interval using standard therapeutic doses, free plasma concentrations fell below the respective MPS IC50 in 84% of tedi-
zolid-treated patients (for a median duration of 7.94 h) and 38% of linezolid-treated patients (for a median duration of 0 h).
Therapeutic doses of tedizolid, but not linezolid, may therefore allow for mitochondrial recovery during antibacterial therapy.
The overall results suggest that tedizolid has less potential to cause myelosuppression and neuropathy than that of linezolid dur-
ing prolonged treatment courses. This, however, remains a hypothesis that must be confirmed in clinical studies.

Many drugs, including various antibacterials, adversely affect
mitochondrial function (1–3). For instance, oxazolidi-

nones, a class of antibiotics that inhibit bacterial protein synthesis
by binding to the 50S ribosomal subunit, can impair mitochon-
drial protein synthesis (MPS) (4–7) due to structural similarities
between mitochondrial and prokaryotic ribosomes (8–10). Inad-
vertent inhibition of MPS is thought to be the underlying mecha-
nism for several well-known side effects of prolonged use of the
oxazolidinone linezolid, such as myelosuppression, lactic acidosis,
and peripheral and ocular neuropathies (8, 11–19). Although be-
ing generally, but not always, reversible, these toxicities can signif-
icantly limit the use of linezolid during long-term therapy (16,
19–24); cautions are included in the official prescribing informa-
tion for this drug (25).

Tedizolid is a novel oxazolidinone antibacterial with potent
activity against a wide range of Gram-positive pathogens, includ-
ing resistant strains, such as methicillin-resistant Staphylococcus
aureus, vancomycin-resistant enterococci, and cfr-positive lin-
ezolid-resistant strains (in the absence of certain ribosomal muta-
tions conferring reduced oxazolidinone susceptibility) (7, 26–29).
Tedizolid is administered as the prodrug tedizolid phosphate,
which is rapidly and extensively converted to the active moiety by
endogenous phosphatases (30). In two recent phase 3 trials, tedi-
zolid phosphate (200 mg once daily for 6 days) showed noninfe-
rior efficacy relative to that of linezolid (600 mg twice daily for 10
days) for management of acute bacterial skin and skin structure
infection (31, 32), a medical condition that generally necessitates
only relatively brief antibacterial treatment. In those studies, both
agents were well tolerated. Tedizolid, however, had a more favor-
able gastrointestinal and hematologic profile than that of linezolid
(31, 32).

Because oxazolidinones have the potential to cause mitochon-
drial toxicity, with wide-ranging safety implications, it is impor-
tant to evaluate whether and to what extent tedizolid might affect
mitochondrial function if used to manage infections that necessi-
tate a longer duration of therapy (e.g., osteomyelitis). To this end,
we carried out nonclinical studies and analyses based on clinical
data, assessing different aspects of the underlying mechanisms or
consequences of tedizolid and linezolid mitochondrial toxicity.
Our objective was to characterize the potential risk of tedizolid
resulting in mitochondrial toxicity-associated adverse events sim-
ilar to those observed with linezolid during prolonged clinical use.

(Data from murine macrophage cell fractionation studies of
tedizolid were presented in part at the 52nd International Confer-
ence on Antimicrobial Agents and Chemotherapy, 9 to 12 Sep-
tember 2012, San Francisco, CA [33]. Data from long-term neu-
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rotoxicity studies of tedizolid in rats were presented in part at the
53rd International Conference on Antimicrobial Agents and Che-
motherapy, 10 to 13 September 2013, Denver, CO [34], and at the
53rd Annual Meeting of the Society of Toxicology, 23 to 27 March
2014, Phoenix, AZ [35].)

MATERIALS AND METHODS
Effects of tedizolid and linezolid on MPS. An in vitro study using isolated
rat heart mitochondria was conducted to compare the tedizolid and lin-
ezolid concentrations that inhibit 50% (IC50) of MPS. The assay, sample
preparation techniques, and data analysis were previously described in
detail (9, 36). In brief, intact, highly coupled mitochondria isolated from
normal rat heart were incubated in a medium containing [35S]methionine
with tedizolid or linezolid (dissolved at various concentrations in di-
methyl sulfoxide as vehicle) and in control medium and vehicle control
medium. Each assay was conducted in 6 independent experiments, using
4 independent stock solutions. The variabilities of results within and be-
tween stock solutions were similar, and all data from the six independent
experiments were thus pooled. The rate of MPS was expressed as pico-
moles of methionine incorporated per milligram of mitochondrial pro-
tein. Dose-response curves were analyzed with Sigma Plot, version 12.5
(Systat Software Inc., San Jose, CA), using the best-fit slope for each con-
centration of compound tested, expressed as a percentage of the vehicle
control best-fit slope, plotted against the test compound concentration (9,
36). Data shown represent means and standard errors of the means (SEM)
of the best-fit slopes at each concentration (n � 6); the best-fit hyperbolic
decay regression line of these data (using the least-squares method) was
used to determine the MPS IC50.

Long-term neurotoxicity study in rats. Because neuropathy can be a
serious oxazolidinone side effect potentially caused by impairment of mi-
tochondrial function, an in vivo study in rats evaluated the potential neu-
rotoxicity of long-term administration of tedizolid at drug exposures
higher than that achieved at the human-equivalent therapeutic dose. An-
imals were approximately 9 weeks old at the start of dosing and were given
either active drug or control for up to 9 months. Tedizolid in vehicle was
administered via oral gavage to Long Evans pigmented rats (n � 84) once
daily at dose levels of up to 30 mg/kg of body weight (males) and 10 mg/kg
(females). Additional matched groups of animals (n � 34) received a
placebo control. Different doses were used in males and females because
of sex-specific differences in tedizolid metabolism (only known to be the
case in rats, not other species) that result in approximately 3-fold higher
total tedizolid plasma concentrations in female rats than in male rats (30).
Neurotoxicology groups consisted of 12 males and 12 females each for the
control and tedizolid dose groups. Toxicokinetic groups consisted of five
males and five females each for control groups and nine males and nine
females each for the tedizolid dose groups. Neurotoxicity evaluations in-
cluded functional observational battery and locomotor activity assess-
ments (each in 6 animals/sex/group) and ophthalmic evaluation (in all 12
animals/sex/group) at baseline and near the end of the 9-month period. In
addition, at the end of the 9-month period, detailed microscopic neuro-
pathological examinations were conducted in 10 animals/sex each in the
control and high-dose tedizolid groups, on multiple regions of the central
nervous system and several central and peripheral nerves (cervical spinal,
lumbar spinal, optic [retrobulbar and intracranial], peroneal, sciatic,
sural, tibial, and trigeminal nerves, lumbar and cervical dorsal root gan-
glia, and dorsal and ventral root fibers), and the results were reviewed by
a second pathologist. Tedizolid exposure was assessed throughout the
study in the animals of the toxicokinetic groups: blood samples (3 ani-
mals/sex/group/time point) were collected before dosing and 1, 2, 4, 8,
and 24 h after dosing at weeks 0 and 39. Control group blood samples were
only collected 2 h after dosing. Tedizolid concentrations in plasma were
analyzed by use of a validated liquid chromatography-tandem mass spec-
trometry method (M. J. Schlosser, H. Hosako, A. Radovsky, M. T. Butt, D.
Draganov, J. Vija, and F. Oleson, submitted for publication). Continuous
functional observational battery data were analyzed by parametric one-

way analysis of variance (ANOVA) to determine intergroup differences; if
significant intergroup variance was found, the Dunnett test was used to
compare treated with control groups. Repeated-measures ANOVA was
used to compare total and ambulatory locomotor activities. Scalar and
descriptive data (i.e., remaining functional observational battery param-
eters and neuropathological findings) were analyzed using the Fisher ex-
act test. Animals were maintained in accordance with the Guide for the
Care and Use of Laboratory Animals (61). The animal facilities at WIL
Research are accredited by the Association for Assessment and Accredita-
tion of Laboratory Animal Care International.

Cell fractionation studies. Previous studies have shown that tedizolid
concentrates approximately 10-fold more than linezolid in macrophages
(37, 38). Cell fractionation and subcellular localization studies were there-
fore conducted to determine whether intracellular tedizolid would be as-
sociated with mitochondria, which might represent a possible toxicity
hazard. Murine J774 macrophages were selected because these cells can
easily be fractionated and their mitochondria adequately separated from
other cell organelles by centrifugation (39). The methods were previously
described in detail and validated to determine the subcellular localization
of various antibiotics, such as aminoglycosides, fluoroquinolones, and
macrolides (40) as well as oxazolidinones (39). Cells were incubated for 2
h with 20 mg/liter tedizolid before collection. Subsequently, the pericel-
lular membranes were disrupted by homogenization using a Dounce tis-
sue grinder, and subcellular organelles were separated by subjecting the
resulting suspension to one of two types of centrifugation: (i) differential
centrifugation (centrifugation at increasing speeds [39], separating or-
ganelles mainly on the basis of size) or (ii) isopycnic centrifugation (cen-
trifugation through sucrose gradients [160,000 � g for 16 h], in which
organelles are separated based on their buoyant densities). Fractions were
then assayed for enzyme markers of the cell components of interest and
for tedizolid content. Marker enzymes included N-acetyl-�-hexosamini-
dase for lysosomes, cytochrome c oxidase for mitochondria, and lactate
dehydrogenase for cytosol. Tedizolid was extracted from cell fractions by
phase partition and protein precipitation and quantified by liquid chro-
matography (reverse phase) coupled to mass spectrometry, using an LTQ-
Orbitrap mass spectrometer (Thermo Scientific, Waltham, MA). Lin-
ezolid was used as an internal standard, with linear responses obtained in
the 10- to 1,000-ng/ml range.

PK analyses. Human free plasma concentration-time data for tedi-
zolid and linezolid in relation to the MPS IC50 of each drug were evaluated
to compare the potential for mitochondrial recovery between tedizolid
and linezolid given at therapeutic doses; pharmacokinetic (PK) data were
derived from two sources: (i) extensively sampled data from healthy sub-
jects (25, 41) and (ii) Monte Carlo simulations. Simulations were con-
ducted based on previously presented population PK models for tedizolid
and linezolid (42, 43). Two sets of 2,500 virtual patients were generated by
resampling the characteristics of patients in the combined population
from phase 3 studies comparing tedizolid and linezolid against acute bac-
terial skin and skin structure infections. One set was simulated to receive
200 mg tedizolid phosphate orally once daily for 6 days and the other to
receive 600 mg linezolid twice daily orally for 10 days. Simulated drug
concentrations at 10-min increments over the dosing interval were ob-
tained based on the respective final population PK models, including co-
variate effects. Ideal body weight and total bilirubin were significant co-
variates in the tedizolid population PK model, and weight and age were
significant covariates in the linezolid population PK model (42, 43). Thus,
these covariates were randomly resampled from the vectors of patient
characteristics from the combined population of phase 3 patients in order
to maintain the covariance structure inherent between covariates. Per the
original publications, neither model included covariance between PK pa-
rameters. Free plasma drug concentrations were calculated by assuming
80% protein binding for tedizolid (30) and 31% protein binding for lin-
ezolid (25). Time below the MPS IC50 was calculated for each virtual
tedizolid patient on day 3 and for each virtual linezolid patient on day 5,
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and the results of these calculations were summarized across the 2,500
patients.

RESULTS
Effects of tedizolid and linezolid on MPS. Time course data
showed that the rate of [35S]methionine incorporation into mito-
chondrial protein, reflecting the rate of protein synthesis, was lin-
ear over time with all evaluated tedizolid and linezolid concentra-
tions in both studies. Dose-response curves (Fig. 1) indicated that
the average (�SEM) MPS IC50 was 0.31 � 0.02 �M for tedizolid
and 6.4 � 1.2 �M for linezolid. A control experiment confirmed
that the solvent used to dissolve both drugs did not affect the assay.
These results suggest that tedizolid and linezolid readily cross the
inner mitochondrial membrane and inhibit MPS and that tedi-
zolid is a more potent MPS inhibitor.

Long-term neurotoxicity study in rats. Toxicokinetic analyses
showed that tedizolid exposure increased proportionally to dose,
with little accumulation over time. The tedizolid steady-state total

area under the concentration-time curve (AUC) exposure at 9
months for the high-dose group was 222 �g · h/ml for male rats
and 189 �g · h/ml for female rats (i.e., approximately 8-fold
greater, on average, than those observed in humans with the ther-
apeutic dose).

After 9 months, no tedizolid-related effects were observed on
functional observational battery testing, locomotor activity as-
sessment, ophthalmic examination, or macroscopic and micro-
scopic neuropathological examination. In both control and
treated animals, axonal degeneration was observed in several of
the nerves evaluated; however, when present, this degeneration
was only minimal to mild. Neuropathology findings were similar
between treated animals and controls: at 9 months, an average of
3.7 axonal degenerations/animal was observed in rats in the high-
dose tedizolid group, compared with an average of 3.6 axonal
degenerations/animal in the control group. Therefore, the degen-
erations most likely were related to aging and were not a treatment
effect. The distributions of axonal degenerations across the evalu-
ated nerves were also similar between the high-dose tedizolid and
control groups after a full 9 months (Fig. 2); we observed no de-
generation in optic nerves. There were no significant differences in
axonal degenerations between male and female animals.

Cell fractionation studies. After differential centrifugation,
87% of the cell-associated tedizolid was recovered in the high-
speed supernatant (Fig. 3A), along with 71% of lactate dehydro-
genase (marker for the cytosol) and only 0.25% of cytochrome c
oxidase (marker for mitochondria). Conversely, 69% of cyto-
chrome c oxidase and 62% of N-acetyl-�-hexosaminidase
(marker for lysosomes) were found in the granule fraction, which
contained only 2.7% of the tedizolid. Overall, these results sug-
gested that tedizolid was recovered from the cytosol and was not
associated in a stable fashion with mitochondria or other organ-
elles.

After isopycnic centrifugation of the postnuclear fraction (ho-
mogenate minus the nuclear and unbroken cell fraction), 99% of
tedizolid was recovered in the top three fractions (Fig. 3B), indi-
cating no association with cell organelles, which move further into
the gradient and equilibrate at their respective buoyant densities.
The separation of tedizolid from mitochondria was strikingly
complete, with only 7% of cytochrome c oxidase activity recov-
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ered in the top three fractions and the remaining activity equili-
brating in the bottom fractions. For N-acetyl-�-hexosaminidase,
27% of the activity was recovered in the top three fractions (most
likely corresponding to enzyme released from damaged lyso-
somes), with the remaining activity spreading at larger densities
throughout the gradient, consistent with the heterogeneous char-
acter of lysosomes. For lactate dehydrogenase, 93% of the activity
was recovered in the top three fractions. There was a modest move
of lactate dehydrogenase into the gradient, resulting in the partial
dissociation of its distribution from that of tedizolid due to the
large molecular weight of this protein in conjunction with the high
centrifugal field used in these experiments. As with differential
centrifugation, these results also suggested that tedizolid was free
in the cytosol and not associated in a stable fashion with subcellu-
lar organelles.

Pharmacokinetic analyses. Figure 4 shows the steady-state
free drug exposure levels for linezolid and tedizolid based on cur-
rent dosing strategies (600 mg twice daily and 200 mg once daily,
respectively), as previously reported in healthy subjects (25, 41), in
relation to the mean MPS IC50 of each agent (Table 1). These data
from healthy subjects with extensive, serial sampling over time are
believed to be more reliable PK data and are reflective of patient
PK data obtained with sparse sampling. While the free plasma
concentration of linezolid remained above its MPS IC50 for the

duration of the dosing interval, free tedizolid plasma concentra-
tions fell below the corresponding MPS IC50 about 18 h into the
24-h dosing interval. The population PK model-based Monte
Carlo simulations yielded similar results, specifically for patients
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treated with tedizolid or linezolid for serious bacterial skin infec-
tions. The values for the time below the MPS IC50 and the percent-
age of patients with values consistently greater than the IC50, as
estimated by these simulations, are shown in Table 1. In most
tedizolid subjects (84%), there were periods (median duration, 8
h) during which tedizolid free plasma concentrations fell below
the tedizolid MPS IC50. In contrast, in most linezolid subjects
(62%), linezolid free plasma concentrations remained above the
linezolid MPS IC50 for the duration of the dosing interval. The
model-derived minimum observed free drug concentration
in plasma (Cmin), maximum observed free drug concentration
in plasma (Cmax), and AUC values are shown for comparison in
Table 2.

DISCUSSION

This article presents the first account of prospective, nonclinical
studies aiming to assess and compare oxazolidinone mitochon-
drial toxicities in the context of their anticipated therapeutic
exposures (toxicodynamics) by using linezolid, considered a
reference oxazolidinone, and tedizolid, a novel oxazolidinone an-
tibacterial. Because impairment of MPS seems to be the primary
trigger of certain clinical adverse effects that can occur with long-
term linezolid treatment, such as myelosuppression, neuropathy,
and lactic acidosis (8, 11–19), we initially conducted an in vitro
study to compare the abilities of linezolid and tedizolid to inhibit
MPS. The results clearly demonstrated dose- and time-dependent
inhibition of MPS, which was more pronounced with tedizolid
than with linezolid. The observation that tedizolid is a more po-
tent MPS inhibitor than linezolid is not surprising, since tedizolid
has additional target site interactions (7), as reflected in its lower
MICs than those of linezolid against Gram-positive pathogens (7,
27, 28). Because bacterial and mitochondrial ribosomes share an
evolutionary origin and structural similarities, differential bind-
ing and ensuing protein synthesis inhibition by oxazolidinones
would affect both types of ribosomes (bacterial and mitochon-
drial) similarly. Considered independently, this result would pre-
dict that tedizolid would cause more mitochondrial toxicity than
linezolid during prolonged clinical use. However, this was not
found in a rigorous 9-month study in rats that was looking for
neuropathological effects after long-term administration of tedi-
zolid at multiples of the human therapeutic exposure. The results
of our additional analyses might offer an explanation and suggest

that tedizolid might in fact cause fewer mitochondriopathic ef-
fects than linezolid at human therapeutic exposures. This hypoth-
esis, however, requires formal evaluation in clinical trials of suffi-
cient duration.

In our first additional analysis, using cells incubated with tedi-
zolid for a short period, we found no evidence of stable association
of the drug with eukaryotic mitochondria. Although this does not
preclude the potential for reversible MPS inhibition with tedi-
zolid, it does suggest a rapid dissociation and avoidance of pro-
longed effects once the drug concentration is lowered. Second,
two analyses were conducted to compare free (unbound) plasma
exposures of tedizolid and linezolid with the MPS IC50 of each
drug. These comparisons suggested that at therapeutic doses, te-
dizolid, but not linezolid, allows partial mitigation of mitochon-
drial impairment over the course of a dosing interval, which might
have important implications for long-term therapeutic use of
these agents.

Several groups of researchers have suggested the trough con-
centration (within certain ranges) as the exposure measure that
best predicts the safety of oxazolidinones (44–48). The hypothesis
that plasma trough levels above the MPS IC50 of an oxazolidinone
will result in permanently inhibited MPS was first advanced by
Garrabou et al. (12). It is believed that patients with trough levels
dropping below the MPS IC50 might have some mitochondrial
recovery and that the duration of this recovery period parallels the
duration that plasma levels remain under this IC50 over the course
of a dosing interval (12). Therefore, protein synthesis inhibitors
maintaining antibacterial efficacy at systemic exposures that allow
for a sufficient period of mitochondrial recovery might result in
fewer related adverse events than agents for which this is not the
case. Therapeutic efficacies of linezolid and tedizolid are driven by
their respective ratios of the area under the concentration-time
curve over the dosing interval (�) at steady state for free drug to the

TABLE 2 Summary statistics of model-derived exposure measures for
tedizolid and linezolid at the respective midpoints of the treatment
durations evaluated in two recent phase 3 studies of acute bacterial skin
and skin structure infections

Exposure measure

Value

Tedizolid on day 3 Linezolid on day 5

fAUC(0–24) (�g · h/ml)
Mean (SD) 4.47 (1.44) 129.88 (67.08)
90% confidence interval (4.43, 4.52) (127.67, 132.08)
Median 4.29 115
Minimum, maximum 0.8, 10.8 15.4, 502.0
n 2,500 2,500

fCmax (�g/ml)
Mean (SD) 0.38 (0.11) 7.59 (3.39)
90% confidence interval (0.3730, 0.3801) (7.48, 7.70)
Median 0.38 7.03
Minimum, maximum 0.0, 0.8 0.7, 23.8
n 2,500 2,500

fCmin (�g/ml)
Mean (SD) 0.07 (0.04) 3.45 (2.63)
90% confidence interval (0.0703, 0.0733) (3.37, 3.54)
Median 0.06 2.82
Minimum, maximum 0.0, 0.3 0.0, 20.0
n 2,500 2,500

TABLE 1 Population pharmacokinetic simulations with tedizolid and
linezolid

Parametera

Value

Tedizolidb Linezolidc

Mean (SE) MPS IC50 (�M) 0.31 (0.02) 6.4 (1.2)

Time below MPS IC50 (h)
Mean (SD) 7.62 (5.49) 3.17 (5.29)
Median 7.94 0
25th–75th percentiles 2.48–11.92 0–4.93

% of patients with all free drug
concentrations above the IC50

16 62

a IC50, 50% inhibitory concentration; MPS, mitochondrial protein synthesis.
b Administered as 200 mg once daily; protein binding of 80% was assumed.
c Administered as 600 mg twice daily; protein binding of 31% was assumed.
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MIC (fAUC0 –�/MIC) (49, 50). Because the PK properties of tedi-
zolid allow for once-daily dosing while maintaining an fAUC/MIC
sufficient for activity (30, 43), the therapeutically effective daily
dose of tedizolid can be reduced to 200 mg, which is 6 times lower
than that of linezolid (1,200 mg). The resulting differences in drug
exposures are magnified further by the greater protein binding
and distribution of tedizolid in the body (30), resulting in free
exposures that are 19 times higher for linezolid than for tedizolid
based on the fAUC, 33 times higher based on the Cmax, and 49
times higher based on the Cmin, based on previously published
data for both agents (25, 41). Assuming that mitochondrion-re-
lated toxicities are driven by the time during which the free Cmin

remains higher than the MPS IC50 of a drug (12, 48), our data help
to explain why tedizolid may be safer than linezolid for clinical
use, despite tedizolid having a lower MPS IC50 (by molar value).

An additional factor that may contribute to fewer mitochon-
drial effects with tedizolid than with linezolid might be the sub-
stantial drug accumulation (and increased plasma concentra-
tions) with repeated administration of linezolid (25, 51, 52). In
contrast, most tedizolid-treated patients stay within the desired
exposure window, allowing mitochondrial recovery because of
narrow PK variability and a lack of significant accumulation (43,
52). It is speculated that accumulation of linezolid is caused by
impairment of hepatic mitochondria, leading to autoinhibition of
its metabolism (53). The particular linezolid population PK
model applied in this analysis used a conservative approach with
no drug accumulation; linezolid accumulation would adversely
affect the proportion of patients experiencing the benefits of mi-
tochondrial recovery. Other linezolid models published in the lit-
erature used either parallel linear and Michaelis-Menten elimina-
tion or a kinetics that was linear initially and subsequently
saturable (53–55). Lack of mitochondrial recovery is thought to be
a problem largely in patients who receive prolonged courses of
oxazolidinone therapy (16, 19–23). In these patients, the differ-
ences in mitochondrial toxicity between tedizolid and linezolid
might have important implications for care.

In the context of clinically relevant mitochondrial effects, the
potential for neuropathy is of particular importance. In contrast
with the 9-month rat study with tedizolid that is presented herein,
linezolid was previously shown to have neurotoxic potential when
administered to rats for 6 months (i.e., 3 months fewer than in our
rat study) at linezolid exposure levels comparable to those in hu-
mans (25). In contrast, tedizolid was tested at much higher (ap-
proximately 8-fold) systemic exposures than would be achieved in
humans at the therapeutic dose. In the previous linezolid study,
minimal to mild sciatic nerve degeneration was observed as early
as 3 months into the study, and minimal to moderate optic nerve
degeneration was observed after 6 months of drug administration
(25). The noticeable differences in neurotoxicity profiles between
linezolid and tedizolid suggest that the risk for neuropathy during
long-term treatment is lower with tedizolid. The data presented
herein are also consistent with previous studies conducted in rats
and dogs for 1 month or 3 months. In those studies, tedizolid was
also without hematopoietic toxicity at exposures up to 4 to 7 times
the human-equivalent exposure, whereas linezolid toxicity was
evident at drug levels comparable to the corresponding human-
equivalent exposure (25, 56, 57). Hematopoietic effects of lin-
ezolid are believed to be the result of MPS inhibition in bone
marrow cells (2, 25, 56, 58). In the clinical setting, results from two
phase 3 trials conducted in patients (n � 1,333) with acute bacte-

rial skin and skin structure infections indicated that tedizolid
given at 200 mg once daily for 6 days resulted in a lower incidence
of adverse changes in hematologic parameters, in particular plate-
lets, than that with linezolid given at 600 mg twice daily for 10
days. This outcome was observed independently of the differences
in exposure times (31, 32). Pooled data from these clinical trials
suggested a potentially clinically relevant difference in terms of
adverse platelet outcomes between linezolid and tedizolid, but the
authors concluded that longer-term studies were necessary to as-
certain this possibility (59).

Mitochondrial gene mutations play an important role in in-
creasing the risk for adverse effects resulting from MPS inhibition
with various antibacterials that act as protein synthesis inhibitors.
Genetic polymorphism is one reason that some individuals are
more susceptible to antibacterial-associated mitochondrial toxic-
ity (2, 60), helping to explain why only a minority of patients
receiving linezolid develop clinically relevant adverse effects via
this mechanism. Certain comorbidities, such as diabetes mellitus
and rare, inherited mitochondrial disorders, might also place pa-
tients at greater risk for mitochondriopathic effects. The same
factors might apply to tedizolid but could not be evaluated in the
context of the studies presented herein. Additional limitations of
our studies should be pointed out. The population PK analyses
used total plasma concentrations. Although oxazolidinone
plasma levels are proportional to tissue concentrations, they are
not equivalent to actual drug levels at tissue sites of potential tox-
icity, and this issue is compounded by the fact that tedizolid and
linezolid penetrate different body tissues to different extents. An-
other limitation is the lack of head-to-head studies directly com-
paring tedizolid and linezolid in terms of subcellular distribution
and long-term neurotoxic potential in animals. Finally, we must
point out the absence of clinical studies in which tedizolid was
administered for more than 3 weeks. Before any statements on
clinically relevant differences between tedizolid and linezolid in
terms of mitochondrial impairment can be made, actual clinical
experience with prolonged tedizolid therapy is necessary.

In conclusion, the overall results suggest that although tedi-
zolid is a more potent inhibitor of MPS than linezolid on a molar
basis, its potential to cause mitochondrion-related adverse events
(such as myelosuppression, neuropathy, and lactic acidosis) in
vivo, in terms of frequency and severity, may be less than that of
linezolid when each drug is assessed in the context of its respective
therapeutic dosage. This illustrates that PK parameters must be
taken fully into account to correctly translate the results of in vitro
toxicity studies to clinical practice, leading the way to true toxico-
dynamic assessment, an approach that may be used for the study
of the safety of other antibiotics and drugs. The studies reported
here also add to the growing body of evidence suggesting that
tedizolid may have a more favorable overall tolerability profile
than that of linezolid. However, the hypothesis that long-term
antibacterial therapy with tedizolid may be better tolerated than
that with linezolid first requires verification in prospective clinical
trials before conclusive statements can be made.
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